// Copyright 2018 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "Common/FloatUtils.h" #include "Core/PowerPC/Gekko.h" #include #include namespace Common { u32 ClassifyDouble(double dvalue) { const u64 ivalue = std::bit_cast(dvalue); const u64 sign = ivalue & DOUBLE_SIGN; const u64 exp = ivalue & DOUBLE_EXP; if (exp > DOUBLE_ZERO && exp < DOUBLE_EXP) { // Nice normalized number. return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN; } const u64 mantissa = ivalue & DOUBLE_FRAC; if (mantissa) { if (exp) return PPC_FPCLASS_QNAN; // Denormalized number. return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD; } if (exp) { // Infinite return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF; } // Zero return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ; } u32 ClassifyFloat(float fvalue) { const u32 ivalue = std::bit_cast(fvalue); const u32 sign = ivalue & FLOAT_SIGN; const u32 exp = ivalue & FLOAT_EXP; if (exp > FLOAT_ZERO && exp < FLOAT_EXP) { // Nice normalized number. return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN; } const u32 mantissa = ivalue & FLOAT_FRAC; if (mantissa) { if (exp) return PPC_FPCLASS_QNAN; // Quiet NAN // Denormalized number. return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD; } if (exp) { // Infinite return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF; } // Zero return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ; } const std::array frsqrte_expected = {{ {0x1a7e800, -0x568}, {0x17cb800, -0x4f3}, {0x1552800, -0x48d}, {0x130c000, -0x435}, {0x10f2000, -0x3e7}, {0x0eff000, -0x3a2}, {0x0d2e000, -0x365}, {0x0b7c000, -0x32e}, {0x09e5000, -0x2fc}, {0x0867000, -0x2d0}, {0x06ff000, -0x2a8}, {0x05ab800, -0x283}, {0x046a000, -0x261}, {0x0339800, -0x243}, {0x0218800, -0x226}, {0x0105800, -0x20b}, {0x3ffa000, -0x7a4}, {0x3c29000, -0x700}, {0x38aa000, -0x670}, {0x3572000, -0x5f2}, {0x3279000, -0x584}, {0x2fb7000, -0x524}, {0x2d26000, -0x4cc}, {0x2ac0000, -0x47e}, {0x2881000, -0x43a}, {0x2665000, -0x3fa}, {0x2468000, -0x3c2}, {0x2287000, -0x38e}, {0x20c1000, -0x35e}, {0x1f12000, -0x332}, {0x1d79000, -0x30a}, {0x1bf4000, -0x2e6}, }}; double ApproximateReciprocalSquareRoot(double val) { s64 integral = std::bit_cast(val); s64 mantissa = integral & ((1LL << 52) - 1); const s64 sign = integral & (1ULL << 63); s64 exponent = integral & (0x7FFLL << 52); // Special case 0 if (mantissa == 0 && exponent == 0) { return sign ? -std::numeric_limits::infinity() : std::numeric_limits::infinity(); } // Special case NaN-ish numbers if (exponent == DOUBLE_EXP) { if (mantissa == 0) { if (sign) return std::numeric_limits::quiet_NaN(); return 0.0; } return 0.0 + val; } // Negative numbers return NaN if (sign) return std::numeric_limits::quiet_NaN(); if (!exponent) { // "Normalize" denormal values do { exponent -= 1LL << 52; mantissa <<= 1; } while (!(mantissa & (1LL << 52))); mantissa &= DOUBLE_FRAC; exponent += 1LL << 52; } const s64 exponent_lsb = exponent & (1LL << 52); exponent = ((0x3FFLL << 52) - ((exponent - (0x3FELL << 52)) / 2)) & (0x7FFLL << 52); integral = sign | exponent; const int i = static_cast((exponent_lsb | mantissa) >> 37); const auto& entry = frsqrte_expected[i / 2048]; integral |= static_cast(entry.m_base + entry.m_dec * (i % 2048)) << 26; return std::bit_cast(integral); } const std::array fres_expected = {{ {0xfff000, -0x3e1}, {0xf07000, -0x3a7}, {0xe1d400, -0x371}, {0xd41000, -0x340}, {0xc71000, -0x313}, {0xbac400, -0x2ea}, {0xaf2000, -0x2c4}, {0xa41000, -0x2a0}, {0x999000, -0x27f}, {0x8f9400, -0x261}, {0x861000, -0x245}, {0x7d0000, -0x22a}, {0x745800, -0x212}, {0x6c1000, -0x1fb}, {0x642800, -0x1e5}, {0x5c9400, -0x1d1}, {0x555000, -0x1be}, {0x4e5800, -0x1ac}, {0x47ac00, -0x19b}, {0x413c00, -0x18b}, {0x3b1000, -0x17c}, {0x352000, -0x16e}, {0x2f5c00, -0x15b}, {0x29f000, -0x15b}, {0x248800, -0x143}, {0x1f7c00, -0x143}, {0x1a7000, -0x12d}, {0x15bc00, -0x12d}, {0x110800, -0x11a}, {0x0ca000, -0x11a}, {0x083800, -0x108}, {0x041800, -0x106}, }}; // Used by fres and ps_res. double ApproximateReciprocal(const UReg_FPSCR& fpscr, double val) { u64 integral = std::bit_cast(val); // Convert into a float when possible u64 signless = integral & ~DOUBLE_SIGN; const u32 mantissa = static_cast((integral & DOUBLE_FRAC) >> (DOUBLE_FRAC_WIDTH - FLOAT_FRAC_WIDTH)); const u32 sign = static_cast((integral >> 32) & FLOAT_SIGN); s32 exponent = static_cast((integral & DOUBLE_EXP) >> DOUBLE_FRAC_WIDTH) - 0x380; // The largest floats possible just return 0 const u64 huge_float = fpscr.NI ? 0x47d0000000000000ULL : 0x4940000000000000ULL; // Special case 0 if (signless == 0) return std::copysign(std::numeric_limits::infinity(), val); // Special case huge or NaN-ish numbers if (signless >= huge_float) { if (!std::isnan(val)) return std::copysign(0.0, val); return 0.0 + val; } // Special case small inputs if (exponent < -1) return std::copysign(std::numeric_limits::max(), val); exponent = 253 - exponent; const u32 i = static_cast(mantissa >> 8); const auto& entry = fres_expected[i / 1024]; const u32 new_mantissa = static_cast(entry.m_base + entry.m_dec * (i % 1024)) / 2; u32 result = sign | (static_cast(exponent) << FLOAT_FRAC_WIDTH) | new_mantissa; if (exponent <= 0) { // Result is subnormal so format it properly! if (fpscr.NI) { // Flush to 0 if inexact result = sign; } else { // Shift by the exponent amount u32 shift = 1 + static_cast(-exponent); result = sign | (((1 << FLOAT_FRAC_WIDTH) | new_mantissa) >> shift); } } return static_cast(std::bit_cast(result)); } } // namespace Common