dolphin-emulator/Source/Core/Common/Timer.cpp
2025-04-03 15:48:51 -05:00

197 lines
5.3 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "Common/Timer.h"
#include <chrono>
#include <thread>
#ifdef _WIN32
#include <Windows.h>
#include <timeapi.h>
#else
#include <sys/time.h>
#endif
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
namespace Common
{
template <typename Clock, typename Duration>
static typename Clock::rep time_now()
{
return std::chrono::time_point_cast<Duration>(Clock::now()).time_since_epoch().count();
}
template <typename Duration>
static auto steady_time_now()
{
return time_now<std::chrono::steady_clock, Duration>();
}
u64 Timer::NowUs()
{
return steady_time_now<std::chrono::microseconds>();
}
u64 Timer::NowMs()
{
return steady_time_now<std::chrono::milliseconds>();
}
void Timer::Start()
{
m_start_ms = NowMs();
m_end_ms = 0;
m_running = true;
}
void Timer::StartWithOffset(u64 offset)
{
Start();
m_start_ms -= offset;
}
void Timer::Stop()
{
m_end_ms = NowMs();
m_running = false;
}
u64 Timer::ElapsedMs() const
{
const u64 end = m_running ? NowMs() : m_end_ms;
// Can handle up to 1 rollover event (underflow produces correct result)
// If Start() has never been called, will return 0
return end - m_start_ms;
}
u64 Timer::GetLocalTimeSinceJan1970()
{
#ifdef _MSC_VER
std::chrono::zoned_seconds seconds(
std::chrono::current_zone(),
std::chrono::time_point_cast<std::chrono::seconds>(std::chrono::system_clock::now()));
return seconds.get_local_time().time_since_epoch().count();
#else
time_t sysTime, tzDiff, tzDST;
time(&sysTime);
tm* gmTime = localtime(&sysTime);
// Account for DST where needed
if (gmTime->tm_isdst == 1)
tzDST = 3600;
else
tzDST = 0;
// Lazy way to get local time in sec
gmTime = gmtime(&sysTime);
tzDiff = sysTime - mktime(gmTime);
return static_cast<u64>(sysTime + tzDiff + tzDST);
#endif
}
// This is requested by Timer::IncreaseResolution on Windows.
// On Linux/other we hope/assume we already have 1ms scheduling granularity.
static constexpr int TIMER_RESOLUTION_MS = 1;
void Timer::IncreaseResolution()
{
#ifdef _WIN32
// Disable execution speed and timer resolution throttling process-wide.
// This mainly will keep Dolphin marked as high performance if it's in the background. The OS
// should make it high performance if it's in the foreground anyway (or for some specific
// threads e.g. audio).
// This is best-effort (i.e. the call may fail on older versions of Windows, where such throttling
// doesn't exist, anyway), and we don't bother reverting once set.
// This adjusts behavior on CPUs with "performance" and "efficiency" cores
PROCESS_POWER_THROTTLING_STATE PowerThrottling{};
PowerThrottling.Version = PROCESS_POWER_THROTTLING_CURRENT_VERSION;
PowerThrottling.ControlMask =
PROCESS_POWER_THROTTLING_EXECUTION_SPEED | PROCESS_POWER_THROTTLING_IGNORE_TIMER_RESOLUTION;
PowerThrottling.StateMask = 0;
SetProcessInformation(GetCurrentProcess(), ProcessPowerThrottling, &PowerThrottling,
sizeof(PowerThrottling));
// Not actually sure how useful this is these days.. :')
timeBeginPeriod(TIMER_RESOLUTION_MS);
#endif
}
void Timer::RestoreResolution()
{
#ifdef _WIN32
timeEndPeriod(TIMER_RESOLUTION_MS);
#endif
}
PrecisionTimer::PrecisionTimer()
{
#if defined(_WIN32)
// "TIMER_HIGH_RESOLUTION" requires Windows 10, version 1803, and later.
m_timer_handle =
CreateWaitableTimerExW(NULL, NULL, CREATE_WAITABLE_TIMER_HIGH_RESOLUTION, TIMER_ALL_ACCESS);
if (m_timer_handle == NULL)
{
ERROR_LOG_FMT(COMMON, "CREATE_WAITABLE_TIMER_HIGH_RESOLUTION: Error:{}", GetLastError());
// Create a normal timer if "HIGH_RESOLUTION" isn't available.
m_timer_handle = CreateWaitableTimerExW(NULL, NULL, 0, TIMER_ALL_ACCESS);
if (m_timer_handle == NULL)
ERROR_LOG_FMT(COMMON, "CreateWaitableTimerExW: Error:{}", GetLastError());
}
#endif
}
PrecisionTimer::~PrecisionTimer()
{
#if defined(_WIN32)
CloseHandle(m_timer_handle);
#endif
}
void PrecisionTimer::SleepUntil(Clock::time_point target)
{
constexpr auto SPIN_TIME =
std::chrono::milliseconds{TIMER_RESOLUTION_MS} + std::chrono::microseconds{20};
#if defined(_WIN32)
while (true)
{
// SetWaitableTimerEx takes time in "100 nanosecond intervals".
using TimerDuration = std::chrono::duration<LONGLONG, std::ratio<100, std::nano::den>::type>;
// Apparently waiting longer than the timer resolution gives terrible accuracy.
// We'll wait in steps of 95% of the time period.
constexpr auto MAX_TICKS =
duration_cast<TimerDuration>(std::chrono::milliseconds{TIMER_RESOLUTION_MS}) * 95 / 100;
const auto wait_time = target - Clock::now() - SPIN_TIME;
const auto ticks = std::min(duration_cast<TimerDuration>(wait_time), MAX_TICKS).count();
if (ticks <= 0)
break;
const LARGE_INTEGER due_time{.QuadPart = -ticks};
SetWaitableTimerEx(m_timer_handle, &due_time, 0, NULL, NULL, NULL, 0);
WaitForSingleObject(m_timer_handle, INFINITE);
}
#else
// Sleeping on Linux generally isn't as terrible as it is on Windows.
std::this_thread::sleep_until(target - SPIN_TIME);
#endif
// Spin for the remaining time.
while (Clock::now() < target)
{
#if defined(_WIN32)
YieldProcessor();
#else
std::this_thread::yield();
#endif
}
}
} // Namespace Common